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An adaptive numerical method for solving partial differential equations is devel-
oped. The method is based on the whole new class of second-generation wavelets.
Wavelet decomposition is used for grid adaptation and interpolation, while a new
O (W) hierarchical finite difference scheme, which takes advantage of wavelet mul-
tilevel decomposition, is used for derivative calculations. The treatment of nonlinear
terms and general boundary conditions is a straightforward task due to the col-
location nature of the algorithm. In this paper we demonstrate the algorithm for
one particular choice of second-generation wavelets, namely lifted interpolating
wavelets on an interval with uniform (regular) sampling. The main advantage of
using second-generation wavelets is that wavelets can be custom designed for com-
plex domains and irregular sampling. Thus, the strength of the new method is that
it can be easily extended to the whole class of second-generation wavelets, leaving
the freedom and flexibility to choose the wavelet basis depending on the application.
(© 2000 Academic Press
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1. INTRODUCTION

Many interesting physical systems are characterized by the presence of a wide re
of spatial and temporal scales. In particular we are interested in solving problems w
localized structures or sharp transitions, which might occur intermittently anywhere
the computational domain or change their locations and scales in space and time.
numerical solution of such problems on uniform grids is impractical, since high-resoluti
computations are required only in regions where sharp transitions occur. In order to sc
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these problems in a computationally efficient way, the computational grid should ad
dynamically in time to reflect local changes in the solution.

Several adaptive gridding techniques exist, and this paper will concentrate on one ¢
class of methods, namely wavelet methods. Wavelet methods take advantage of the
that functions with localized regions of sharp transition are well compressed using wav
decomposition. The basic idea behind the wavelet decomposition is to represent a f
tion in terms of basis functions, called wavelets, which are localized in both physical
wavenumber spaces [1-4]. The currently existing wavelet-based numerical algorithms
be roughly classified as either wavelet—Galerkin [5—8] or wavelet—collocation [9—-16] tyj
The major difference between these approaches is that wavelet—Galerkin algorithms s
problems in wavelet coefficient space and, in general, can be considered gridless n
ods, while wavelet—collocation methods solve problem in physical space on a dynamic
adaptive computational grid. In wavelet—collocation methods every wavelet is uniqu
associated with a collocation point, and thus grid adaptation is simply based on the ana
of wavelet coefficients; i.e., at any given time the computational grid consists of poil
corresponding to wavelets whose coefficients are greater than a given threshold (a pa
eter that controls the accuracy of the solution). With this adaptation strategy a solutio
obtained on a near-optimal grid for a given accuracy; i.e., the compression of the solu
is performed dynamically as opposedaqosteriorias done in data analysis. The ma-
jor advantage of wavelet—collocation methods is the ease of treating the nonlinear tel
Derivatives in wavelet—collocation methods can be computed in many ways, including
plication of matrix derivative operators [11, 17], projection back and forth between wave
and physical space at every time step [13, 14], and use of finite difference operators [9
15, 16, 18, 19].

Although the wavelet transform with its space/scale localization is an attractive techni
to apply to the solution of problems with localized structures, traditional, biorthogor
wavelet transforms have difficulties dealing with boundaries. Traditionally, wavglets
are defined as translates and dilates of one mother wayelet., 1/42 (X) = ¥ (2Ix — k).
Orthogonal and biorthogonal wavelet transforms have been extended to the interval |
22], but a better solution is to abandon the translation/dilation relationship. This lead:
what are referred to as second-generation wavelets in the literature [23]. The main advar
of second-generation wavelets is that wavelets are constructed in the spatial domain
can be custom designed for complex domains and irregular sampling.

Second-generation wavelets supply the necessary freedom to deal with boundary cc
tions, but with a cost. With the loss of translation invariance goes also the Fourier transfo
the primary tool used in the creation of most of the first-generation wavelet bases. There
few first-generation wavelets that can be constructed without the use of Fourier technic
developed in [24]. Interpolating wavelets, independently discovered by Donoho [25] ¢
Harten [9], are an example of such a family. Interpolating wavelets are based on the inte
lating subdivision scheme of Deslauriers and Dubuc [26] and are well suited to numer
analysis [9, 10, 14, 16, 27]. Interpolating wavelets, however, do have their shortcomir
which are discussed in detail in Section 2.1. Itis desirable to have a larger class of sec
generation wavelets to build on. Fortunately there is a general method available for
construction of second-generation wavelets, known as the lifting scheme [23, 28].

The main objective of this paper is to establish a general framework for constru
ing numerical methods for solving partial differential equations, which are based
second-generation wavelets. The beauty of second-generation wavelets is that the algo
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developed for one particular choice of wavelet basis can be easily extended to the wi
class of second-generation wavelets, leaving the freedom and flexibility to choose wave
depending on applications. In this paper we will demonstrate the method by solving
number of one-dimensional nonlinear test problems on an interval using lifted interpol
ing wavelets. Extensions of the algorithm to higher dimensions, complex geometries,
irregular sampling will be the subject of further investigation.

The rest of the paper is organized as follows. Section 2 gives a brief introduction of 1
second-generation wavelets. Two major tools for constructing second-generation wave
namely interpolating wavelet transform and lifting, are discussed in detail in Sections 2.1
2.2. The efficient implementation of the lifted interpolating wavelet transform algorithm
described in Section 2.3. The numerical algorithm based on the lifted interpolating wave
transform is introduced in Section 3. Finally, Section 4 contains numerical examples
applications of the new method to the solution of one-dimensional Burgers and modif
Burgers equations and the one-dimensional diffusion flame problem.

2. SECOND-GENERATION WAVELETS

Second-generation wavelets are a generalization of biorthogonal wavelets, which
more easily applied to functions defined on domains more general Riarsecond-
generation wavelets form a Reisz basis for some function space, with the wavelets b
local in both space and frequency and often having many vanishing polynomial mome
but without the translation and dilation invariance of their biorthogonal cousins. Desp
the loss of two fundamental properties of wavelet bases, second-generation wavelet
tain many of the useful features of biorthogonal wavelets, including the existence of a
transform. In order to define second-generation wavelets, we start with a multiresolut
analysis adopted from [23]:

DEFINITION 2.1. A second-generation multiresolution analydisof a function space
L consists of a sequence of closed subspdtes {V/ c L | j € J} such that

1. VI cyi+t,
2. Ujes Viis dense irL, and _ |
3. for eachj € 7, V! has a Reisz basis given by scaling functigas | k € K1},

where/C! is some index set. For notational convenience we use the superscript to der
the level of resolution and the subscript to denote the location in physical space at that Iy
of resolution. Notice that unlike the first generation case, there is no restrictigh torbe
dilates or translates of some fixed mother function.

A dual multiresolution analysiﬁl = {f/_i c L | j € J} also exists, consisting of spaces
Vi spanned by dual scaling functiorﬂ which are biorthogonal to the primal scaling
functions. Sincep} belongs tov! and hence td’i+1, it can be expressed as

o = Z htjg|¢|j+l- 1)

leKi+t

Thus, instead of basing a multiresolution analysis on scaling funaﬁboﬂe could just as
easily define it in terms of the filter coefficierhﬁ,, , as long as the set of coefficients admits
a solution to Eq. (1). Note that not all filter coefficients will admit such a solution.
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Waveletswlj are introduced the same way as in the biorthogonal case, nhamely as
sis functions folW!, the complement o¥’i in Vi+L: ie., Vitt = Vi g Wi, while dual
wavelets are biorthogonal to the wavelets and span the complemghtroi’i +1. By their
construction wavelets form a Reisz basis for the function sphaaed allow a function to
be represented by its wavelet coefficients. In the same manner as with the scaling func
wavelets at leve] can be expressed in terms of scaling functions at lgwvell as

= gl @)
|

Also, sincep) ™ € Vi @ Wi, it holds that
Pt = Z ﬁ|j,k¢’|j + Z grjn,kl/fr%~ (3)
| m

The notion of a second-generation multiresolution analysis induces a fast secc
generation wavelet transform. Given scaling function coeffm@bﬁ at levelj + 1, the
wavelet coefﬁments{k and scaling function coefﬁuen(:é at level j are given by

dl = Z GLc 4
Z hk T ®)
The inverse transform is then implemented by

o= Z hkCh + Z glkd. (6)
m |

The coefficients:i anddd are often referred to as the smooth and detail components of t
signal at levelj.

Itis formally useful to think of the second-generation wavelet transform in terms of filts
banks, despite the fact that the filters now act only locally and are potentially differe
for each coefficient. Filter banks are a common way of representing biorthogonal wav
transforms. Slmply put, the coefﬂuer@ﬁ,, hk,, gk|, andh), k| are respectively represented
asfiltersG/, Hi, GI, andH! in a filter bank, where typlcalljﬂj is a low-pass (smoothing)
filter andé-j a high-pass filter, whil&s andH! are respectively low-pass and high-pass
synthesis filters. One step of the forward and inverse wavelet transforms is shown as a k
diagram in Fig. 1.

FIG. 1. Block diagram of fast wavelet transform.
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2.1. The Interpolating Wavelet Transform

Before discussing the general construction of second-generation wavelets, it is impor
to consider the interpolating wavelets of Donoho and Harten, which were the inspirat
for the construction of second-generation wavelets and could be considered one of the
main building blocks. In this section we briefly describe the standard interpolating wave
transform algorithm and discuss its limitations. For details we refer to [9, 23, 25].

We start in the context of first-generation wavelets, working on the real line. Interpolati
wavelets are constructed on a set of dyadic grids on the line,

Gl={xerR:x¥=2kkez), jez, (7)

w_herex,ﬂ are the grid (collocation) points arjdis the level of resolution. Note that since
x, ! = xJ, iteasily follows thai =2 ¢ GI. An example of dyadic grids for = 0, . .., 4is
given in Fig. 2. Interpolating wavelets can be formally introduced through the interpolati
subdivision scheme of Deslauriers and Dubuc [26], which considers the problem of build
an interpolantf I (x) on a gridg i ** for a given data sequende{x&). Deslauriers and Dubuc
defined a recursive procedure interpolating the da(bd) to all dyadic points in between.
The algorithm proceeds by interpolating the déta; ) to the points on a grig! +* which

do not belong tag!. This procedure does not modify any of the existing data and tht
can be repeated until the data are interpolated to all dyadic points up to the desired |
of resolution. The interpolation is achieved by constructing local polynomialg, 1 (X)

of order 2N — 1, which uses R closest points. For example, to find the value of the
interpolant at location,, jl we construct the polynomial of ordeN2— 1 based on the
values of the function at locationg,, (I = —N + 1, ..., N) and evaluate it at location
xékﬁ_ll. Evaluating this polynomial at poirxtékill and substituting the values of polynomial
coefficients expressed in terms of valuie, ), we can easily get that

N

I (xgd) = Z wli,l F(44)- (8)

I=—N+1

What makes the interpolating subdivision so attractive is that the values of these weic
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FIG. 2. Example of the dyadic grid.
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FIG. 3. Interpolating scaling functiog (x) and its Fourier transformp (¢) for N = 3.

are the same for evenly spaced grids. However, this procedure can be easily extended
nonuniform grids, which will result in location-dependent weights. The generalization
the scheme to the intervals is also straightforward. In this caseNheearest points will
not be located symmetrically, but will be chosen from the points on the interval.

The interpolating scaling functlom((x) can be formally defined by settinigx') = § ,
wheres « is the Kronecker delta, and then performing the interpolating subdivision schel
up to an arbitrary high level of resolutiah This procedure will result in the scaling function
¢, sampled at the locationg' . Now using the linear superposition, it is easy to show tha

10 = clgl (), ©)
k

where for consistency with wavelet notation we e,'ptz f (x&). It is easy to show that for
the regularly spaced gri@!, all scaling functions are translates and dilates of one functic
#(x) = #3(x), called the interpolating scaling function. An example of an interpolatin
scaling functiong (x) and its Fourier transforn® (&) for N = 3 is shown in Fig. 3. It is
easy to show that the interpolating function has the following properties:

e compact support.e., it is exactly zero outside the interval?N + 1, 2N — 1];
e ¢(x) is cardinal (interpolating); i.e.¢ (K) = &k o;

e linear combinationaqi (x) reproduce the polynomials up to degrdé 2 1;

e ¢(X) satisfies a refinement relation (1);

e ¢(X) is the autocorrelation of the Daubechies scaling functions of ordgi22].

In light of the multiresolution analysis, the functidi (x) defined by Eq. (9) belongs to the
space)!. Repeating the procedure for the- 1 level of resolution we construct the function
fI+1(x), which belongs ta)1+1. Due to the cardlnal property of the interpolating wavelet it
follows thath(xli) = f(x)). Slncexk = Xy ! which simply follows from (7), is it easy to
show thatf I (x} ™) = fi+1(x)" ) However, f 1 (x4 # f”l(xé;fl) If we call half the
difference f l“(x fl (x2k+1) a wavelet coefficientl, and sety, (x) = 2¢§k++11(x)

or ¥ (x) = 2¢(2x — 1), then we can define the detail functidh(x) to be

dio) = dhuh. (10)

+1
Wl -

Now it is easy to show that 1t1(x) = f1(x) + d! (x). In other words, the functiod! (x)
is nothing but the difference betweeii+(x) and f1(x). Using Egs. (9) and (10) we
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obtain
Z a0 =Y del o0+ dhd 0. (11)
| m

Now evaluating Eq. (11) on the grig we can easily recover Egs. (1)—(6) and the value:
for Gy, hi,, o' andh, . Due to cardinal properties of interpolating wavelets, the forwar
interpolating wavelet transform can be written as

= (bt = bk ). @2
|
¢ =cit (13)

while the inverse wavelet interpolating transform is given by

cht =, (14)

Chity = 2d{ + Z Wi Gt (15)
[
Wherew,i’I are the interpolating coefficients from even poinigti,) to odd points><2"k++ll
introduced in Eq. (8).

The algorithms for constructing interpolating wavelets on an interval and on a unifor
grid are the same, except that wavelets will not be dilates and translates of each other,
the exception of internal wavelets for regular dyadic grid. Wavelets defined on a real |
are an example of first-generation wavelets, while the extension to the irregular grids
intervals is an example of second-generation wavelets.

Interpolating wavelets do have their shortcomings, however. The wavelet basis ¢
structed using interpolating scaling functions does not provide a Reisz basi$, fas the
wavelet itself has non-zero mean, and the dual wavelets are Bifaections which do
not belong tol2. In addition, the wavelet transform derived from interpolation introduce
considerable aliasing, since the scales are not well separated by the interpolating wav
(the low-pass filter is just a constant). The latter property of the interpolating wavelet tral
form is probably the most dangerous for numerical methods, since it can lead to eit
unstable or inaccurate results. In addition, wavelet coefficients cannot be used for ana
and prediction of small-scale phenomena, since the severe aliasing completely distorts
values and wavelet coefficients no longer represent the information in certain freque
bands, but rather exhibit low-pass filter characteristics (see Fig. 3).

In order to illustrate the shortcomings of the interpolating wavelet transform let us cc
sider two examples. First consider the wavelet transform of a unit impulse0, O,
1,0,0,...) at two different locations corresponding to the coarsest and finest levels
resolution. The result of interpolating wavelet transform is shown in Fig. 4, where vertic
lines with the circle in the vertex represent the magnitude of the wavelet coefficient, wh
thex- andy-values of the bases of these lines respectively give the wavelet (grid) locatic
and levels of resolution. Note that when the unitimpulse is located at the point corresponc
to the finest level of resolution (right impulse), there is only one non-zero coefficient corl
sponding to the wavelet at the location of the impulse. When the impulse (left impulse]
located at a point corresponding to the coarsest level of resolution, the information is alia
all the way to the coarsest level. Also note that the pattern and magnitude of wavelet co
cients remain constant at all levels except the coarsest. As a second example we consi
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FIG. 4. Distribution of coefficientsdlj andc? of the interpolating wavelet transform for two unit impulses.
Left and right impulses are located at the points corresponding respectively to the coarsest and finest leve
resolution.

Gaussian envelope-modulated single-frequency sifical = cog80rx)e %%, which is
shown in Fig. 5, where for fairness the frequency of the signal is chosen not to be a mult
of the sampling frequency. The wavelet transform of this signal is given in Fig. 6, where
better readability we show only wavelet coefficients whose magnitude exceetiitte
again note the presence of physically meaningless large wavelet coefficients at lower le
of resolution.

2.2. The Lifting Scheme

The lifting scheme is a tool for constructing second-generation wavelets, which are
longer dilates and translates of one single function. In contrast to first-generation wavel
which used the Fourier transform for wavelet construction, a construction using lifting
performed exclusively in spatial domain and, thus, wavelets can be custom designec
complex domains and irregular sampling.

The basic idea behind lifting is to start with simple multiresolution analysis and gradua
build a multiresolution analysis with specifacpriori defined properties. The lifting scheme
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FIG. 6. Distribution of coefficients), andc? of the interpolating wavelet transform of the function given in
Fig. 5. Only coefficients whose absolute values are abovéd@ shown.

can be viewed as a process of taking an existing wavelet and modifying it by adding lin
combinations of the scaling function at the same level of resolution,

Y0 = y200 = > ukp(x — k), (16)
k

whereu (stands for update) should be chosen so that the resulting wavelet has the des
properties. This leaves the scaling function of the multiresolution analysis unchanged,
does change the dual scaling function and wavelet. Alternatively, one can leave the ¢
scaling function unchanged and change the dual wavelet, scaling function, and wavi
This procedure is called dual lifting. Thus both lifting and dual lifting allow one to build
new wavelet transform with hopefully better performance properties.

For example, consider the case of the linear interpolating wavelet transform, describe
the previous section. The interpolating wavelet in this case is simply the shifted and dila
scaling function; i.e.3r (X) = 2¢(2x — 1). This wavelet is a poor choice in general, as it
has no vanishing moments (its integral is non-zero). This wavelet can be lifted by us
Eq. (16). An example of the lifted interpolating wavelet and its Fourier transform is shov
in Fig. 7. Comparing Fourier transforms given in Figs. 3 and 7, we can see that the lif

o 02 04 06 08 12 14 16 18 2

]
4.1

FIG. 7. Lifted interpolating wavelets (x) and its Fourier transforn# (¢) for N = 3.
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FIG. 8. Block diagram of lifted wavelet transform.

wavelet has a vanishing moment. It was shown in [30] that the interpolating wavelet
orderN can be lifted so that the resulting wavelet iNisanishing moments.

It is much easier to think about lifting from the filter bank standpoint. Then lifting ca
be viewed as the insertion of a new filter coupling the high- and low-pass channels of
filter bank as shown in Fig. 8. This modifies the old filters to new ones as follows:

hi =hgr', (17)
gy = o) — Zuk Dk (18)
F‘lj<.| = F‘E!?j + Z uli,mgrjn,l’ (19)
m
G = g (20)
kI = k1 -

This can be interpreted as simply presmoothing wavelet coefficients before applying
old transform. The actual computation of the fast wavelet transform is done using

dh =2 dmi'd™ (21)
Z pyle) ™t 4 Z Ul md (22)

with the inverse

J+l Zholdj<cl _Zukmdj>+zgold] ) (23)

Note that the coefﬁmemgf("dJ o', g’), hod), anduj ,, are respectively represented as

filters G, Ho|d, Gl Hags andUl in the fllter bank shown in Fig. 8, Whefdzmd is a low-
pass filterG 4 is a high-pass filtet) | is the lifting filter, an(ﬁmd andHJ,, are respectively
low-pass and high-pass synthesis filters. Note that if the lifting scheme is applied to wav
construction on infinite or periodic domains, then the filter will be global, while in th
case of finite domains, irregular sampling, or complex domains all filters will be loce
Also note that application of lifting to infinite or periodic domains leads to constructic
of first-generation wavelets, which can be alternatively obtained using Fourier techniq
developed in [24], but the lifting scheme has the following advantages:

1. Lifting allows faster (factor of 2) implementation of the wavelet transform.
2. No auxiliary memory is required and the original signal can be replaced with |
wavelet transform.
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3. With lifting, the inverse wavelet transform is the simple reversal of the order ¢
operations and the interchange of addition and subtraction operations.

2.3. The Lifted Interpolating Wavelet Transform

The lifting idea comes very naturally for interpolating wavelets. In fact if one looks clos
atthe form of interpolating forward and inverse wavelet transforms, given by Egs. (12)—(1
it is easy to see the underlying dual lifting scheme. The block diagram for the interpolati
wavelet transform written as dual lifting is shown in Fig. 9, wh&and St denote
respectively the delay and advance operators, $&. = f_; and S~ f, = fi1, while
Wi denotes local interpolating operators. The only difference from regular lifting is th
the lifting is applied to obtain the high-pass filter coefficient. We recall that filter weights
the operatoW! are constructed fromi — 1 order polynomial interpolation involvingh2
neighboring even points, which makes it straightforward to extend the algorithm to fin
domains and irregular sampling.

The interpolating wavelet transform can be considerably improved if one applies
additional lifting step in the manner discussed in Section 2.2. In particular, lifting resu
in wavelets that have zero moments and well-defined dual wavelet and scaling functi
that belong toL2. To ensure that the resulting wavelets have zero mean, it is enough
impose the constraint on the transform that the average of a funﬁti@«) is the same for
aII levels of resolution. In this case it is easy to show (see [23])ubgt_ Wi me i where
Wy, are the interpolating coefficients from odd pom§§+2|+1 to even pointsc, . Note
that a different constraint would lead to a different choice of the lifting fmﬁe,g

After application of the additional lifting step, the lifted interpolating wavelet transforn
becomes

= 5 (ot - S ulickls ) @4
|
o =ch'+ Z J)Ij(,ldngrI’ (25)
|

while the inverse wavelet interpolating transform is given by

L o
it =cl - Z Die e (26)
i
1 j RS
C%I:rl = 2d¢ + Z Wi Co 2l (27)
i

where wli,, and w”ﬂ(,, were defined earlier. The block diagram of the lifted interpolating
wavelet transform is given in Fig. 10.

FIG. 9. Block diagram of interpolating wavelet transform.
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FIG. 10. Block diagram of lifted interpolating wavelet transform.

Note that the order of the interpolating polynomial from odd to even points does not ne
to be the same as in the case of even-to-odd interpolation. Thus filter weigihtsari be
constructed froni2N — 1)-order polynomial interpolation involving neighboring odd
points. As a result the lifted interpolating wavelet transform is controlled by two paramet
N and N. It was shown by Sweldens [23, 30] that paramedecontrols the number of
zero moments in the interpolating scaling function, wtlecontrols the number of zero
moments of interpolating wavelets. In particular it can be shown that

/x%(x)dx:ap,o for 0<p<2N -1, (28)
D
/xpw(x)dx=o for 0<p<2N-1, (29)
D

where [, denotes integration over the (finite or infinite) domain for which the wavele
are constructed. Thus in order to reach the highest compression it is recommende
haveN = N. An example of a lifted interpolating wavelet fok = N = 3 and its Fourier
transform is shown in Fig. 7. We also note that by settihg: 0 we automatically recover
the standard interpolating wavelet transform given by Egs. (12)—(15).

In order to illustrate the advantages of lifted interpolating wavelets we apply the lift
interpolating transform to the examples considered in Section 2.1. The result of the lif
interpolating wavelet transform of two unit impulses is shown in Fig. 11. In contrast

L r ]

nTch ooy i

N
T

eootlees eottes i

1)

o0 - % o0 o0 .0 o9 g

w
T

FIG. 11. Distribution of coeﬁicientsﬂd andc? of the lifted interpolating wavelet transform for two unit
impulses. Left and right impulses are located at the points corresponding respectively to the coarsest and
levels of resolution.
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FIG. 12. Distribution of coefficients} andc? of the lifted interpolating wavelet transform of the function
given in Fig. 5. Only coefficients whose absolute values are aboveat8 shown.

the standard interpolating wavelet transform the information is not aliased to the coat
levels and the distribution of wavelet coefficients is very similar. The result of the lifte
interpolating wavelet transform of a Gaussian envelope-modulated single-frequency si
is presented in Fig. 12, where for better readability we show only wavelet coefficier
whose magnitude exceeds $0 Once again note that no information is aliased to the
scales below the scale corresponding to the scale of the envelope. These two exan
illustrate the considerable improvement of lifted interpolating wavelets over the stand:
ones. Adding the flexibility of the second-generation wavelets and the ability to physica
interpret wavelet coefficients gives us a pretty flexible framework of constructing numeri
algorithms for solving partial differential equations, which will be discussed next.

3. NUMERICAL METHOD

The most general form of a system of partial differential equations arising in many fiel
of physics and engineering can be written as

0
8—1: = F(x,t,u, Vu), (30)
0= ®x,t,u, Vu), (31)

where Eq. (30) describes the time evolution of a vector funatiand Eq. (31) represents
boundary conditions and possibly algebraic/differential constraints.

The numerical method is formally derived by evaluating the governing partial differenti
equations at collocation points, which results in a system of nonlinear ordinary differenti:
algebraic equations describing the evolution of the solution at these collocation points
order for the algorithm to resolve all the structures appearing in the solution and yet
efficient in terms of minimizing the number of unknowns, the computational grid shou
adapt dynamically in time to reflect local changes in the solution; i.e., high-resoluti
computations should be carried out only in those regions where sharp transitions occu

With a collocation method the computational cost of calculating nonlinear terms a
incorporating general boundary conditions (Dirichlet, Neumann, and mixed type) is Ic
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Thus the overall computational cost of the numerical method is roughly determined by
following three factors:

1. Computational cost of the dynamic grid adaptation.
2. Computational cost of calculating spatial derivatives of a function on an adaptive gt
3. Computational cost of the time integration procedure.

This paper will deal with the first two issues, while construction of an efficient time integr
tion algorithm, which takes into account the multilevel character of wavelet approximatic
will be the subject of further investigation. In the next two sections we will develop efficiel
procedures for the dynamic grid adaptation and calculation of spatial derivatives.

3.1. Grid Adaptation

Grid adaptation occurs quite naturally in wavelet methods, e.g., [5, 9]. To illustrate t
algorithm, let us consider a functioinx), defined on a closed interve. As we discussed
in Section 2, interpolating wavelets are constructed on a set of grids,

giz{xgesz:kelcj}, jeZz, (32)

where grid pointsq{ can be uniformly or nonuniformly spaced. The only restriction is tha

x) = x4', which guarantees the nestedness of the grids;dlec GI*2. Following the

construction of second-generation wavelets described in Section 2.3, we construct sc:
functionse, (x) (k € KJ) and wavelets' (x) (I € £) such that on each level of resolution
J the functionf (x) can be approximated as

J-1
F100 =) 00+ > > dlyl 0. (33)
kek© j=0leLi

The strength of the wavelet approach now appears. For functions which contain isol
small scales on a large-scale background, most wavelet coefficients will be small; thus
can retain good approximation even after discarding a large number of wavelets with sr
coefficients. Intuitively, the coefficierd! will be small unless thef has variation on the
scale ofj at the locatiornx.

More precisely, if we rewrite the approximation (33) as a sum of two terms compos
respectively of wavelets whose amplitude is above and below some prescribed theesho

fr) = 200+ 2%, (34)
where
J-1 o
200 =Y 00 +> > dyl 0, (35)
kek© j=0 leL
CUES
J-1 o
f2o0=>" > dyl . (36)
j=0 leg)

Id‘J |<e
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flx)

FIG. 13. The test functionf (x) = —tanh*22) + exp(—64(x — Xo)?) with X, = 1/3 andv = 10°2.

2v

then following [25], it can be shown that
| £7(¢) = f2(x)| < Cpe 37)
and the number of significant wavelet coefficieffss bounded by as
N < Cpe V2N, (38)

where coefficient€; depend orf 7 (x). Combining Egs. (37) and (38) we have the following
bound on an error in terms of:

|70 — £200] < CaN 2N, (39)

This relation was numerically verified for the test function shown in Fig. 13 and conve
gence results are presented in Fig. 14 for different choice$ ahd N. Note that if the

107+

(@)l

DAL

1£7 (=) - f

FIG. 14. Convergence of thresholded interpoléit(x) (J = 15) for the test function shown in Fig. 13 for
different choices of parameteksandN: N = N =2 (©); N=2,N=0(+); N=N =3 (e); N = N = 4 ().
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level of resolutiond is high enough so that all the scales are properly resolved, i.e., t
error || f7(x) — f(X)|« is negligible, then the bound (39) can be used to measure tl
approximation of the functiorf (x). In fact, for the case presented in Fig. I4js cho-
sen so that the errdrf Y (x) — f (X)||~ is of the same order as the truncation error of the
machine.

Relation (39) gives us the framework for representing a function with significantly few
degrees of freedom, while still retaining the good approximation. However, in order
realize all the benefits of wavelet compression, we need to have the ability to reconst
the fzJ (x) from the subset ofV" grid points. We recall that every scaling functigp(x)
is uniquely associated Withi, while each Wavelef//lj (X) is uniquely associated with an
x§|+1 collocation point. So once the wavelet decomposition is performed each grid pc
on the finest level of resolutiod is uniquely associated either with the wavelet or with
the scaling function at the coarsest level of resolution. Consequently, the collocation p
should be omitted from the computational grid if the associated wavelet is omitted from
approximation. Note that for the stability of the reconstruction algorithm we will need
keep all the grid points associated with the scaling function at the coarsest level of resolut
This procedure will result in a set of nested adaptive computational glids G/, such
thatg! c g\t foranyj < J —1.

Removal of collocation points in this manner presents a potential problem. Since cc
ficient information aboutf (x) at all locations in space is no longer available, the recor
struction of this function from the available coefficient information may not be possibl
This potential difficulty can be easily overcome, thanks to lifting, as long as one ensu
that all grid points required for the recursive computation of the wavelet coeffigignts
using Egs. (24) and (25) are available.

The most crucial feature of the lifting scheme, which allows us to build a stable recc
struction algorithm, is the ability to find wavelet coefficients on each level of resolutic
independently. To illustrate this, let us consider one step forward wavelet transform gi
by Egs. (24) and (25). In order to find wavelet coefficidhtwe need to know only the
values ofc) " at the grid points associated with the wavel¢ix), i.e.,x} "3, and the A
nearest even grid poin%ﬁlzn. However, in order to calculaté we only need the non-zero
values oft)’ . Thus, if we knowa priori what wavelet coefficients are zero, we can disregar
the values of the function at that point. Then finding the grid points that need to be incluc
in an adaptive grid proceeds as follows:

1. Given a functionf (x), sample it on a grid;”. .

2. Perform the forward wavelet transform to get all valaggk € K°) andd,‘ (I el
0<j=<J-1. _

3. Analyze wavelet coefficiend# and create a mask! for the grid points¢?, associated
with wavelets for whichd!| > e.

4. Include into the mask\ all grid points associated with scaling functions at the
coarsest level of resolution.

5. Starting fromthg = J — 1level of resolution, recursively extend the mask to include
grid points at the coarser level of resolution necessary for calculating wavelet coefficie
at levelj that are marked by maski.

At the end of this procedure we will have the complete m&gkfrom which we can easily
construct a set of nested adaptive computational gid®erforming the wavelet transform
on that adaptive grid will guarantee that all wavelet coefficients will be exactly the sat
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as by performing the wavelet transform &f (x) on the complete grid and then setting
to zero the ones that do not belong to the adaptive grid. We call this criterion the perf
reconstruction criterion. The procedure for adding additional grid points to an adapt
grid, so that the resulting grid satisfies the perfect reconstruction criterion, will be call
the perfect reconstruction check. Requirement (5) may potentially result in less effici
compression of , but in practice, with lifted interpolating wavelets, this increase in storag
is negligible.

In solving evolution equations, additional criteria for grid adaptation should be added.
particular, as suggested by Liandrat and Tchamitchian [5], the computational grid shc
consist of grid points associated with wavelets whose coefficients are or can possibly bec
significant during the period of time when the grid remains unchanged. In other words
any instant in time, the computational grid should include points associated with wavel
belonging to aradjacent zonef wavelets for which the magnitude of their coefficients is
greater than aa priori prescribed threshold. We say that the WthMé/(x) belongs to the
adjacent zone of waveletlj (x) if the following relations are satisfied,

li—i1<L, 2 k—=11 <M, (40)

where L determines the extent to which coarser and finer scales are included into
adjacent zone anill defines the width of the adjacent zone in physical space. The adjace
zone satisfying criteria (40) will be called thype ladjacent zone. The values bbfandM
affect the total number of collocation points present in the gridat any instant of time
and the time interval during which the calculations can be carried out without modifyir
the computational grid. For efficiency we want to keep the number of collocation poir
as small as possible, while at the same time we would like to minimize changes in-
collocation grid. We found that the most optimal valueslare M = 1; in other words the
adjacent zone includes the nearest points at the same, one above, and one below lev
resolution.

The perfect reconstruction check procedure should be performed after inclusion of
adjacent wavelets into the mask. If one takes advantage of perfect reconstruction ct
procedure, then the adjacent zone criteria can be substantially simplified to include ¢
wavelets at the finer levels of resolution, since perfect reconstruction criteria will autom
ically add all adjacent wavelets at the coarser levels of resolution. For exantple-ik,
then the mask should be extended to include po@]ﬁ. This kind of adjacent zone will
be calledtype II.

The process of grid adaptation for the solution of partial differential equations consi
of the following five steps:

1. Knowing the values of the solutiag (t) atGt computational grid, compute the values
of wavelet coefficients corresponding to each component of the solution using forw:
wavelet transform. _

2. Analyze wavelet coefficiend# and create a mask! for the grid points¢?, associated
with wavelets for whichd/| > e.

3. Extend the mask1 with grid points associated with type | or Il adjacent wavelets.

4. Perform the reconstruction check procedure, which results in a completeMhask

5. Construct the new computational ggé2t, which will be used for next step of time
integration. -
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3.2. Calculation of Spatial Derivatives on an Adaptive Grid

When solving partial differential equations numerically, it is important to obtain deriv:
tives of a function from its values at collocation points. Three different approaches of findi
derivatives at collocation points have been previously suggested:

1. Differentiating Eg. (35) and evaluating it at the grid poigitsas in [14, 17].

2. Performing finite difference differentiation on an irregular grid as in [15, 18].

3. Interpolating solution to the finest level of resolution and performing finite differenc
differentiation on uniform grid as in [16].

The main disadvantage of the first approach is that is requires non-recursive evaluatic
contribution of wavelets at all scales and the effectiveness of wavelet transform is lost
particular, the cost of calculating derivatives@J N9A\'), whereN is the order of the
wavelet andl is the dimensionality of the problem, which makes the algorithm very slo
for three-dimensional problems. The main disadvantage of the second approach is tt
requires construction of local finite difference operators which are different at locatic
where grid density changes. In addition, the second approach does not use wavelet t
form for interpolation (only for grid adaptation) and thus does not take full advantage
multiresolution properties of wavelet decomposition. The main disadvantage of the tf
approach is that it requires interpolation to the finest level of resolution, and thus introdu
additional overhead.

In this section we describe an efficient procedure for calculating spatial derivatives, t
takes advantage of the multiresolution wavelet decomposition, fast wavelet transform,
uses finite difference differentiation. In other words we make wavelets do what they do w
compress and interpolate. We make finite difference do the rest: differentiate polynomi
We note that the differentiation procedure introduced in this section is similar in spirit
the procedure used in the wavelet—Galerkin method by Walden [19].

The differentiation procedure is based on the interpolating properties of secol
generation wavelets. We recall that wavelet coefficieptsieasure the difference between
the approximation of the function at thje+ 1 level of resolution and its representation at
the j level of resolution. Thus if there are no points in the immediate vicinity of a grid poir
Xi,i.e.,]d),| < e ( = —1,0), and if points<; are not present igi. ™, then there exists
some neighborhood of, 2} where the actual function is well approximated by the loca
piecewise polynomial based ah (| € K1); i.e.,

‘f(x) > del 0| < Cae. x el (41)

leK!

Thus differentiating this local piecewise polynomial will give us the value of the derivati
of the function at that particular location. Let us denotefllya collection of such points
at each level of resolution. Then the procedure for finding derivatives at all grid points w
consists of the following steps:

1. Knowing the values of a function on an adaptive computational@rigerform the
wavelet transform.

2. Recursively reconstruct the function starting from the coarsest level of resoluti
On each level of resolution find derivatives of the function at grid points that belong to
DL.
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FIG.15. Convergence of derivative of thresholded interpolf;_htx) for the test function shown in Fig. 13 for
different choices of parametersandN: N =N =2(©); N=2,N=0(+);N=N =3 (e); N= N =4 (o).

At the end of the inverse wavelet transform we will have derivatives of the function at :
grid points. The computational cost of calculating spatial derivatives will be roughly tf
same as the cost of forward and inverse wavelet transforms.

Nextlet us examine the accuracy of the differentiation procedure. Assume that we perfc
local differentiation atapoinqi e Dl andh! isthe quantity describing the local grid spacing
at that point (it is constant for a uniform grid). Then from construction, the local truncatic
error of the interpolation scheme(is!)2N = O(e). Numerical differentiation will reduce
the order of the scheme by 1 and makeght)?N—1 = O(e@N-D/2N) Hence in light of
Eq. (38) we have the error bound on the derivative

|IDfY(x) — Df2(x)| < CaN 72N+, (42)

whereD stands for the derivative operator. This relation was verified numerically for the te
function shown in Fig. 13 and the convergence results are presented in Fig. 15 for diffel
choices ofN andN.

3.3. Numerical Algorithm

Both grid adaptation and derivative computation procedures can easily be extende
second-generation wavelets defined in complex domains. Since the objective of the p.
is to present the general framework for the second-generation wavelet collocation metl
we will not discuss the extensions of the algorithm to higher dimensions and comp
geometries, but leave it to be the subject of further investigation. However, with appropri
modifications, the numerical algorithm for solving problems with localized structures w
consist of three steps regardless of the dimensionality of the problem:

1. Knowing the values of the solutiary (t), we compute the values of wavelet coeffi-
cients corresponding to each component of the solution using the fast wavelet transfc
For a given threshold we adjus(}t;rAt based on the magnitude of the wavelet coefficients
assigning a valud,j = 0 for the new grid points.
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2. Ifthere is no change between computational giidandG! 4! at timet andt + At,
we go directly to step 3. Otherwise, we compute the values of the solution at the collocat
pointsGttAt, which are not included igt .

3. We integrate the resulting syste?n of ordinary differential equations to obtain n
valuesuy (t + At) at positions on the irregular grigt™" and go back to step 1.

We use bold symbols to denote-dimensional vectorsu=(u;,...,uU,) and k=
(Kg, ..., Kn).

With such an algorithm the grid of collocation points is dynamically adapted in time al
follows the local structures that appear in the solution. Note that by omitting wavelets w
coefficients below a threshold parametere automatically control the error of approxi-
mation. Thus the wavelet collocation method has another important feature: active cor
of the accuracy of the solution. The smalteis chosen to be, the smaller the error of the
solution is. In typical applications the value o¥/aries between 1¢ and 10, assuming
that the unknown dependent variables have been properly normalized. As the value
increases, fewer grid points are used in the solution.

The algorithm can utilize different criteria for adaptation of the collocation grid. For e
ample, one can compose a computational grid based on the analysis of wavelet coeffic
of both the function and its derivatives. If a system of equations is solved, the adapta
of the computational grigil. should be based on the analysis of wavelet coefficients a
sociated with all dependent variables. The adaptive @i@an be constructed as a union
of irregular grids corresponding to each dependent variable. Note that the algorithm
be easily extended to the case where each variable is treated on a separate compute
grid. The mapping from one grid to another can be achieved via wavelet interpolation. T
may be very important for problems where scales associated with different variables
considerably different.

4. RESULTS AND DISCUSSION

In order to illustrate the accuracy and efficiency of the proposed numerical method,
will apply it to the solution of two well-known test problems used in the past to stuc
first-generation wavelet methods [11, 14, 17]. Then we will illustrate the ability of the ne
method to be successfully applied to more complicated problems. In all examples prese
in this paper we use a fifth-order Gear implicit time integration algorithm implemented
the IMSL routine IVPAG.

4.1. Problem Formulations

I. Burgers equation. For the first test problem we consider the Burgers equation

au ou 92u

— 4+ U— =v—, X -1,1),t >0, 43
ot Dax  Vaxz c=LD.t> (43)

with initial and boundary conditions

u(x, 0) = —sin(w x), u(+l1,t) =0, (44)
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whose analytical solution is known and given by

J73 sinGr (x — 1)) exp(—cos(m (X — 1)) /27 v) exp(—n?/4vt) dn

ux,t) = — ey
J- exp(—cos(m (x — 1)) /2 v) exp(—n?/4vt) dn

(45)

The problem is solved for = 1072/7 and 0< 't < 2/7.

Il. Modified Burgers equation.As a second test problem we consider the modifiec
Burgers equation

X € (—o0, +00),t > 0, (46)

wherev is a constant. The initial and boundary conditions are

X — Xo

u(x, 0) = —tanh( ) u(doo,t) = F1. 47

The analytical solution of this problem is a shock wave moving with the uniform veloci
v given by

ux,t) = —tanh(x_xo_vt) (48)
2v

For numerical purposes, due to the exponential decay of the solution at infinity, the probl
can be considered in a finite domain. Thusifee 1072, xo = —1/2,v = 1,and0<t < 1,

it is legitimate to consider the problem in the domaig [—1, 1] with Dirichlet boundary
conditions.

Ill. Diffusion flame. As athird problem we consider a one-dimensional diffusion flam
problem containing fuel and oxidizer on either side of the flame. The chemical mechani
we consider is represented by a single reaction between fuel and oxidizer,

F+O=P, (49)

where unity stoichiometric coefficients were assumed for simplicity. The reaction rate |
haves according to the Arrhenius form

C

T
w = KpYepYo eXP<—Ta), (50)

wherep is the density,T, is the activation temperatur is the pre-exponential factor,
andYg andYp are the fuel and oxidizer mass fractions.

The characteristic scales are the length stzlethe speed of sound;, and the den-
sity pg. The subscript O refers to the reference value at some location, and supe¥scri
denotes dimensional quantities. The reference state is that of the unburned gas; the r
ence temperaturgy; = (y — 1) Ty is obtained from the equation of state, wherés the
ratio of specific heatg = c,/c,. With this normalization, the non-dimensional governing
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equations are given by [31]

ap ad
P 2 (pu) =0, 51
8t+3x(p) (51)
dpu 0 aP ot
P 2 ouny = —— 4+ 22, 52
ot T ax PV = "5 Tax (52)
de 9 19 1 9/ aT
sy Y Pul = — = - 2,2 :
at T axlE+ Pl Reax(ur)+RePr8x<M8x)+we’ (53)
8pY|: d 1 d 3Y|: .
ZoYeu) = +——— [ uZE ) — g, 54
ot T ax PR +ReS¢:ax<M 8x> Sie (54)
Yo 0 1 98/ aY ,
—(pYoU) = ——— — ( u—— | — EDwe,, 55
ot T axPYow ReS@ax(“ 8x> §Pie (55)
-1
P="""pT, (56)
%
where
4 du
_4 ou 57
T=gho (57)
w=I[y—-DTJ], (58)
1, P
e= - L 59
ZPu +y—l (59)
) -2 B(1—0)
= Ep2YY, P 60
we = Ep FOeXp( T—al—0) (60)
11—«
9=T((V—1)T—1), (61)
T —To
— 62
« T (62)
Tac
=0—, 63
B @ (63)
1 1—«o
= —1), 64
=150 o« 7Y (64)

a = 0.76, E is the pre-exponential factdF; is the adiabatic flame temperature, @@ the
equivalence ratio. Note that Eq. (61) is the non-dimensional version of Eq. (50), rewritter
aform suggested by Williams [32]. The independent non-dimensional parameters appec
in the equations are

kX L* * %
_ Po%l” . SG=——  Sp=——, (65
p*DE o*Dg§

o

Re , Pr=

wherep* is dynamic viscosityp* is thermal conductivity, anddf and Dg are fuel and
oxidizer diffusivities, respectively. Itis assumed that the Prandtl number Pr and the Schr
numbers Seand Sg are constant throughout the flow.

The initial conditions are given by

p(X1, %2,0) =1, (66)
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u(x, 0) = 0, (67)

T, 0 = ! py— (68)
1

Ye(x, 0) = YFOO< - Eerf( )) (69)
1 1

where erfx) = 272 [Xe ¥’ ds. The domain is chosen to be-[, L], and the initial
flame is located ax = 0. The boundary conditions are non-reflecting outflow boundar
conditions of Poinsot and Lele [33].

The problem is solved for the following set of parameters:

Re=10°, Pr=1, S¢=So=1 y=14, L=4  A=102
«=06, p=4 E=10, d=1  Yrew=Yoe=1

4.2. Numerical Results
4.2.1. Problems | and Il

The first problem tests the ability of the method to resolve a one-dimensional shock wh
is fixed in space but whose gradient changes in time. The second problem tests its abili
resolve a moving one-dimensional shock. The dynamic adaptation of the computational
G! isillustrated in Figs. 16 and 17 for the first and second problems, respectively. In b
cases we use threshold parameter 10-°> andN = N = 3. The evolution of the solution
of the Burgers equation from the uniformly smooth distribution to the shock structure rest
in the growth of the wavelet coefficients corresponding to the smaller scales, which in t
results in the refinement of the grid. Figure 16 illustrates the progressive refinement
the computational grig;t with the decrease of the shock thickness. In the second te
problem we demonstrate that the algorithm dynamically adapts to the moving struct
(shock). Figure 17 shows that the region of collocation points associated with the sn
scales moves with the shock, thus permitting continuous proper resolution of the sh
structure.

In order to demonstrate the tremendous savings of the adaptive algorithm we nee
compare the number of grid points used in the adaptive and nonadaptive methods.
can be easily measured by the compression coefficleatN” /A/ which measures the
ratio of the total number of collocation poink$’ required for the nonadaptive algorithm
to solve the same problem with the comparable resolution and the actual number of
pointsA used in the calculations. The larger the compression coefficient, the more effici
the adaptive algorithm. Time evolution of the compression coefficients for both Proble
I and Il is shown in Fig. 18. Note that since the resolution requirements are determir
by the minimum shock thickness, the compression coefficient for Problem | is very hi
at the beginning of the computations, since the solution is very smooth for small valt
of t. The compression coefficient for the Burgers problem decreases with the increas
the shock gradient at the origin and reaches its minimum when the gradient at the or
is at its maximum. The compression coefficient for the moving shock problem remains
the same level as expected, since the shock just changes its location in space.
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FIG. 18. Time evolution of the compression coefficighfor (a) Problem | and (b) Problem Ik (= 105,
N=N =3).

Next we study the convergence of the numerical method on the example of the first
test problems. We emphasize that the convergence study for the adaptive wavelet algori
with € # 0 should be distinguished from the refinement study. The latter is done by sett
€ to zero and progressively refining the computational grid, i.e., increasing the maxim
allowable level of resolutiond. In the convergence study the maximum allowable level o
resolution is not fixed and can be as high as needed. The convergence study is perfo
by progressively decreasing the threshold paramet€he decrease af will result in an
increase of the number of grid points and level of resolution. It was shown in Sectic
3.1 and 3.2 that the threshold parameteontrols the accuracy of the approximation of a
function and its derivative. However, it does not automatically guarantee that the error of
time-dependent solution will remain bounded and controlled bg well. For that reason
we introduce the notions of adjacent zone and grid adaptation strategy. If the numel
method is convergent, then the computational error of the time-dependent solution sh
decrease with the decreasecofin order to eliminate the computational error associate
with the time integration procedure, the time integration step for the system is choser
that the truncation error associated with the time integration algorithm is considerably |
thane. In the refinement study if we assume that the time integration scheme is at le
as accurate as the space discretization, then we can find an estimate for the error b
In the convergence study of adaptive wavelet methods the task of finding an error bo
is not that trivial. One cannot simply assume the progressive accumulation of the erro
the ordere. In addition, the task of finding an error bound is complicated by inclusion ¢
the adjacent zone, continuous thresholding (adding and omitting wavelets), and poss
time history effects of wavelet thresholding. The complicated nature of error depende
isillustrated in Fig. 19, where time evolution of the computational error for Problems | al
Il is shown. Because of the above-mentioned difficulties we were not able to find a g¢
analytical error bound of the solution.
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FIG. 19. Time evolution of the pointwisé.,-error of the solution of (a) Problem | and (b) Problem II
(e =105 andN = N = 3).

The results of the convergence study for the test problems are presented in Figs
and 21, where the pointwise,.-error of the solutions at the final time of integration is
shown. On these figures the dependence of the number of grid pdiotsthe values of
the threshold parameteris shown as well. These figures clearly indicate the convergent
of the numerical method with the decrease dflote that the actual error of the solution is
larger thare, butis of the same order. Thus prescribing the valuewed can actively control
the accuracy of the solution. The results in Figs. 20 and 21 show considerable improven

w't

Io"

i

k...

llu(z,t) — uex(2,t)|loo, €
S

Io-ll |

10 10
N
FIG.20. The pointwisel .,-error of the solution (solid line) of Problem | at time= 2/ for different choices

ofe, N,andN: N =N =2 (); N=2,N=0(+); N = N =3(e); N = N = 4 (o). The dashed line shows the
value ofe as a function ofV.
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-1

[lu(z,2) — vex(2,)]lco, €

FIG.21. The pointwisel ,.-error of the solution (solid line) of Problem Il at tinhe= 1 for different choices
ofe, N,andN: N =N =2(©); N=2,N=0(+); N =N =3 (e); N = N = 4 (). The dashed line shows the
value ofe as a function ofV.

in accuracy when compared to the wavelet collocation method described in [14, 17],
which the error did not monotonically decrease to the truncation error of the machine
rather saturated at a certain value that depended on the order of the wavelet.

4.2.2. Problem Il

This problem illustrates the ability to solve a system of nonlinear partial differenti
equations and deal with very complicated boundary conditions. Let us briefly describe
evolution of the solution. The model problem involves a simple one-dimensional diffusi
flame containing fuel and oxidizer on either side of the flame. The parameters for the prob
were chosen so that the mixing layer was initially cold. As time progresses, the ene
released due to the chemical reaction heats the gas, which in turn increases the reactio
and eventually leads to self ignition of the flame. The chemical parameters were chose
that the ignition delay time would be relatively short. The autoignition occurs so rapidly tt
it creates two shock waves propagating away from the diffusion flame. The reaction z
associated with the diffusion flame is very narrow and requires a very fine grid for adequ
resolution. The propagating shocks also have very large gradients and to adequately re
them would also require a fine resolution. The solution of the problem and the associz
computational grid are shown in Figs. 22—24 for three different times respectively: befc
during, and after ignition. The problem is solved with= 107 and N = N = 3. This
problem illustrates the ability of the algorithm to accurately approximate a solution tf
changes drastically in time.

In contrast to the previous two problems, which are described by a single equation v
one dependent variable, the diffusion flame problem involves five unknowns, five par
differential equations (51)—(55), and the equation of state (56). Thus the adaptation of
computational grid should be based on the analysis of all dependent variables. In add
to properly resolving all dependent variables, one needs to accurately model the reac
rate. Thus for this problem the adaptation of the computational @friés based on the
analysis of coefficients associated with all five dependent variables and the chemical so
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FIG.25. Time evolution of (a) the number of grid poimt§ and (b) the compression coefficighfor Problem
(e =107, N =N =3).

termwe given by Eq. (60). The irregular grigt is constructed as a union of irregular grids
corresponding to each dependent variable and reaction rate term.

The efficiency of the grid adaptation is demonstrated in Fig. 25, which shows the til
evolution in the number of grid points used in the calculations as well as the compres:s
coefficient. In the present calculations we used up to 12 levels of resolution with an effec
resolution (the resolution of the non-adaptive computational grid needed to perform the s
calculation) of 32,769 grid points. We see an increase in the number of grid points ar
drop in the compression coefficienttats 3.4, which is associated with the autoignition
and creation of two traveling shock waves.

5. CONCLUSIONS

A general framework for constructing adaptive numerical methods for solving partial d
ferential equations, which are based on second-generation wavelets, is developed. We
decomposition is used for grid adaptation and interpolation, while a@ew) hierarchi-
cal finite difference scheme, which takes advantage of wavelet multilevel decompositi
is used for derivative calculations. In this paper the method is demonstrated by solving
one-dimensional Burgers and the modified Burgers equations with small viscosities anc
laminar diffusion flame problem. The results indicate that the computational grid and as
ciated wavelets can very efficiently adapt to the local irregularities of the solution in orc
to resolve regions of large gradients. Furthermore, a solution is obtained on a near opt
grid for a given accuracy; i.e., the compression of the solution is performed dynamically
opposed t@ posteriorias done in data analysis. Additional strengths of the algorithm ar

1. Wavelet transform can be performed on an adaptive grid with no auxiliary memo
i.e., the original signal is replaced with its wavelet transform.
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2. The method can easily be extended to the whole class of second-generation wave
leaving the freedom and flexibility to choose wavelet basis depending on applications.
3. The method can handle general boundary conditions and nonlinearities.

Future areas of research include the implementation of the algorithm in higher dim
sions, complex geometries, and irregular sampling. This work is currently underway.
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